

Verification and Validation of ICME Models

Mark D. Benedict (UES,Inc.) David Riha (SwRI) 1/14/14

Figure 2 Verification & Validation activities and outcomes. (Guide Figure)

Goals for this course:

- Establish Standards based Basic Vocabulary
 - "V&V activities promote team-wide communication"
- Present consensus best practices for V&V to the team in the form of lecture, discussion, and demonstration using a contextualized model.
- Introduce Standards and Tools
- Identify areas where ICME projects will encounter different challenges than have been addressed in current standards
- Contextualized Example to Illustrate core concepts of V&V and initiate discussion
- Provide References
- Feedback for improving

- Prescriptive step-by-step approach
 - No one-size-fits-all solution exists
- In depth description of statistical theory
 - Proper application of statistical theory to actual engineering problems can be subtle and often counterintuitive
- Computational Tool Recommendations
 - · Many excellent choices
 - User preference

Start	Duration	End	Торіс	Instructor
2:00	0:30	2:30	Model V&V Introduction	Benedict
			Background and motivation	
			ASME Standard	
			ICME checklists and model maturity	
			Case Study and business	
2:30	0:10	2:40	case	Benedict
2:40	0:20	3:00	V&V Plan/Process	Benedict
			Verification	
			Validation metrics	
			Case study example	
3:00	0:30	3:30	Methods	Riha
			UQ	
			Case study examples	
			Calibration	
			Case study examples	
3:30	0:30	4:00	Case Study V&V Summary	Riha
			Documentation and Tracking	

Webinars

4 Follow up webinars are planed that go into the topics presented in greater detail:

ICME focused V&V introduction
 V&V plan and process with examples
 Methods: UQ and Calibration
 End to End Case Study V&V summary
 with detailed review of the ICME checklists and TRL

Acknowledgments:

This course and the material contained within is the product of a large number of contributors that we would like to thank, including but not limited to:

- Southwest Research Institute
- ASME V&V 10 committee
- Metals Affordability Initiative GE-12 Team
- Dan Backman and Brad Cowles
- AFRL/RX ICME IPT and Rollie Dutton

Integrated Computational Materials Science & Engineering

Vision

Drive aerospace systems design by coupling computation and experiment to predict and deliver optimized materials and manufacturing solutions.

- Key elements of ICME:
 - Quantitative & predictive
 - Computation and Experiment
 - Addresses complete materials life cycle
 - Integrated with system design framework

Integrated Computational Materials Engineering

A Transformational Discipline for Improved Competitiveness and National Security

Committee on Integrated Computational Materials Engineering

National Materials Advisory Board

Division of Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

The challenge ICME addresses

 Materials are currently defined by static specs based on lengthy empirical testing. They are traditionally developed outside of the product design loop, limiting choices and opportunities

What a tensile test looks like:

MIL-HBK-5H

Matl.

Design

Mfg

Specification	AMS 4911 and MIL-T-9046, Comp. AB-1 Sheet Plate					MIL-T-9046, Comp. AB-1 Sheet, strip, and plate					
Form											
Condition	Annealed					Solution treated and aged					
Thickness, in.	< 0.1875		0.1875-2.000		2.001- 4.000	s 0.1875	0.1875-0.750	0.751- 1.000	1.00		
Basis	A	в	A	В	s	s	s	s	5		
Mechanical Properties: F _{ac} kni:											
L LT	134 134	139 139	130 ^a 130 ^a	135 138	130 130	160 160	160 160	150 150	14		
	126	131	120	125	120	145	145	140	12		
F _o , ksi: L	133	138	124	129	124	154	150	145			
LT F _n , ksi	135 87	141 90	130 79	142 84	130 79	162 100	93	87			
F _{bu} , ksi: (eD=1.5) (eD=2.0)	213 ^b	221 ^b	206 ^b	214 ^b	206 ^b	236	248	233			
F_{by} , ksi: (eD = 1.5)	171 ^b	178 ^b	164 ^b	179 ^b	164*	210	210	203			
(e/D = 2.0) e, percent (S-basis):	208 ^h	217 ^b	194 ^b	212 ^h	194 ⁶	232	243	235			
L LT	Sr Sr	-	10 10		10 10	54 54	8 8	6			
E, 10 ³ ksi E,, 10 ³ ksi	16.0 16.4										
G, 10° ku	0.2										
Physical Properties: a, Ib/in. ³					0.	160					
C, K, and a					See Figs	are 4.5.1.0					

To a Materials Engineer

To a Mechanical Engineer

R

Case Study: Ni superalloy Yield strength model

Microstructure control through H.T. of disk superalloys

ICME Goal:

ICMSE must deliver solutions we can trust and use

How much confidence do we need to build in these models to use them?:

- •Researcher: "Will other people believe the results?"
- •Engineer: "Do I believe the results enough to modify the process?"
- •Engineering Project Manager: "Am I willing to bet my project (my career, my company) on these results?"

•Decision maker on high-consequence systems: "Am I willing to bet the lives of the flight crew/public safety/national security on these results?"

Validation requirements, and investment, increase with TRL...

Truth vs. Accuracy

"Essentially, all models are wrong, but some are useful."

•Empirical Model-Building and Response Surfaces (1987), George Box and Norman R. Draper, p. 424, ISBN 0471810339

Modelers and Physicists tend to focus on whether a model is right or wrong Engineers often ask a more useful question: How accurate is the model?

Rome 100 AD

Modern Planetariums

Fidelity:

Current models contain an unprecedented level of detail

But How Credible Are These Models for Decision Making?

Error: Difference between simulations results and <u>true</u> value

Error And Uncertainty

Limited Physics Fidelity (incompressible fluid, negligible air resistance, ...)
Numeric solution method
Spatial or temporal discretization
Finite precision arithmetic

Uncertainty: When a true value is not known or defined it is a measure of possible states or values

Two broad categories of uncertainty:

•Epistemic: lack of knowledge (property of the observer)

•Aleatory: inherent randomness (property of the system)

Sources of Simulation Uncertainty: Input Uncertainty <u>Model Form</u> Uncertainty Numerical Error iterative error discretization error

John R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2d Edition, University Science Books, 1997

Deterministic vs. Stochastic

Structural Model with Deterministic Parameters

Structural Model with Uncertain Parameters

Effect on Tip Displacement

Estimate of Pi RED = pi, BLUE = mean =3 14195 sd = 0.01632 trails = 10000

How is Credibility built in Modeling and Simulation?

- Verification
 - Credibility from understanding the mathematics
 - Are the equations being solved correctly?
 - Compare computed results to known solutions
- Validation
 - Credibility from understanding the physics
 - Are the correct equations being solved?
 - Compare computed results to experimental data
- Uncertainty Analysis
 - Credibility from understanding the uncertainties
 - How accurate is the model prediction?
 - Quantify uncertainty & variability from all sources

Verification: Process of determining that a model implementation accurately represents the developer's conceptual description of the model and the solution to the model

Math issue: "Solving the equations right"

Validation: Process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model

Physics issue: "Solving the right equations"

Verification must precede validation; and when used,

calibration must precede validation and use different data .

Verification and Validation Standards

Extracted From: B. Thacker (SWRI), AIAA Structures Technical Committee, 09-06-02; proceeded by (1) AIAA V&V Guide 1998 and (2) S. Schlesinger, "Terminology for Model Credibility", *Simulation*, Vol.32, No. 3, 1979 pp.103-104

- The process of building credibility remained largely ad hoc until American Institute of Aeronautics and Astronautics (AIAA), "Guide for the Verification and Validation of Computational Fluid Dynamics Simulations", AIAA G-077-1998.
- Heavily influenced "Guide for Verification and Validation in Computational Solid Mechanics", ASME V&V 10-2006. This
 is often recommended as an excellent starting point for further investigations into the practice of V&V.

ASME V&V History and Structure

- In 1999 an ad hoc verification & validation specialty committee was formed under the auspices of the United States Association for Computational Mechanics (USACM)
- In 2001 the American Society of Mechanical Engineers (ASME) approved the committee's charter:
 - To develop standards for assessing the correctness and credibility of modeling and simulation in computational solid mechanics.
- Committee was assigned the title and designation of the ASME Committee for Verification & Validation in Computational Solid Mechanics (PTC 60).
- With the addition of other V&V committees, an overarching committee (V&V Standards Committee) was formed and PTC 60 was changed to V&V 10

Current Structure:

V&V Standards Committee in **Computational Modeling and** Simulation V&V 10 - Verification and Validation in Computational Solid Mechanics V&V 20 - Verification and Validation in Computational Fluid **Dynamics and Heat Transfer** V&V 30 - Verification and Validation in Computational Simulation of Nuclear System Thermal Fluids Behavior V&V 40 - Verification and Validation in Computational Modeling of Medical Devices

- V&V 10-2006 <u>Guide for Verification and Validation</u> in Computational Solid Mechanics – Published 2006 (revision soon)
- Draft V&V 10.1 An <u>Illustration of the Concepts of Verification and</u> <u>Validation</u> in Computational Solid Mechanics – Published 2012
- Draft V&V 10.2 <u>Role of Uncertainty Quantification</u> in Verification and Validation of Computational Solid Mechanics Models – <u>Rough</u> draft
- Draft V&V 10.3 <u>Role of Validation Metrics</u> in Verification and Validation of Computational Solid Mechanics Models – <u>Outline</u>
- Draft V&V 10.X Value of V&V for <u>Decision Making</u> Not started
- Several others identified...

ASME Verification & Validation Process Chart

Figure 2 Verification & Validation activities and outcomes. (Guide Figure)

Validation Hierarchy

- Validation hierarchy
 - Breaks the problem into smaller parts
 - Validation process employed for every element in the hierarchy (ideally)
 - Allows the model to be challenged (and proven) step by step
 - Dramatically increases likelihood of right answer for the right reason
- Customer establishes intended use and top-level validation requirement
- Validation team constructs hierarchy, establishes sub-level metrics and validation requirements
- In general, validation requirements will be increasingly more stringent in lower levels
 - Full system sensitivity analysis can provide guidance

Case Study: Model Hierarchy

TAD E-6 5 0000 1100

Summary: V&V Process

- Design and develop the modeling and V&V plan
- Design and develop models
- Verify the model implementation
- Perform UQ and sensitivity studies to understand uncertainties
- Design validation/calibration experiments
- Perform experiments
- Assess accuracy (validation)
- Revise model/experiment
- Document the model, process, and accuracy assessments

